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A new method is presented for calculating average values of molecular weight, chain length and sequence 
distr ibut ions in linear copolymerization. The method provides a considerable expedient to these results 
over most other approaches since the average values are calculated directly, bypassing the calculation of 
distr ibut ions themselves. The approach is applicable to polymerizations possessing a f irst order Markovian 
statistical character, and relies on the recursive nature of this type of chain. Several examples are given, 
some new results for the AA,  BB, CC (urethane-like) system are obtained and the recursive approach is 
contrasted wi th older approaches. 

INTRODUCTION 

Many alternative approaches may be taken in deriving ex- 
pressions for molecular weight, molecular weight (or chain 
length) distribution (MWD or CLD) and sequence lengths 
resulting from simple polymerization mechanisms 1'2. The 
approaches may be grouped into two broad categories. There 
are deterministic approaches, which start with the differential 
equations for file time rates of change of the various species 
in the reacting system. These types of approaches necessarily 
involve the solution of an infinite set of differential equa- 
tions to give the molecular weight distribution. Special 
techniques can accomplish this analytically in some cases. 
When possible, this gives the solution for the full time 
development of the MWD. The other category is that of 
statistical approaches, which make use of probabilistic 
arguments. These approaches almost always, either explicitly 
or implicitly, model the polymerization as a first-order 
Markov chain process. For simple mechanisms the chain 
length distribution can often be written down directly, 
since there are few, or perhaps only one, elements in the 
transition probability matrix. Intuition serves well in these 
simple cases. However, in cases of multicomponent poly- 
merization, or other complicating factors in the polymeriza- 
tion mechanism, intuition may fall short. A formal 
machinery can be set up to handle these more complex 
cases, as we shall see, either in terms of a direct summation 
approach 3 or the more elegant formalism of Markov chain 
theory 4,s. A disadvantage of all probabilistic approaches, 
although not too severe, is that the results for MWD and CLD 
are always developed in terms of some (one or more) proba- 
bility which must be associated with a parameter of the 
reaction, such as a fractional conversion of some reacting 
group. A model for the time evolution of the MWD must 
result from an independent model of this conversion vs. 
time. A little-exploited advantage of some statistical 
methods is that they sometimes reveal some interesting 
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stochastic character of the polymerization 4'5. The expres- 
sions for some interesting multicomponent polymerizations 
are both unwieldy and difficult to generate using the formal 
mechanisms. 

We are interested in a class of polymerizations which are 
difficult to model by any of the available approaches. These 
are linear step-growth copolymerizations where temperature 
varies both spatially and temporally in the polymerizing 
medium, where unequal reactivity may be important, and a 
phase separation may take place during the reaction. Ure- 
thane polymerization under conditions appropriate to the 
reaction injection-moulding process is a prime example of a 
practical process showing these complexities 6. There are 
also indications that certain copolyamidations may be sub- 
ject at least to the latter phenomenon 7. Because of our 
interest in the reaction injection moulding process and the 
complexities attendant to applying any of the formal 
machineries to the task of calculatingMWD, CLD and 
sequence distributions, we have developed, and present in 
this paper, a new conceptual approach to the calculation of 
the average properties of these distributions. It is a probabi- 
listic approach and therefore the resulting equations must 
be augmented with a set of kinetic differential equations to 
reveal the behaviour with time. However, the merit of the 
approach presented here is that it obtains the average values 
of the distributions directly, to give rather simple expressions 
even in the face of unequal reactivities and other complexities 
which severely obstruct the more formal and complete 
methods. 

The method to be described here utilizes the recursive 
nature of the linear Markov chain process. It is identical in 
concept to a new method recently presented by Macosko 
and Miller for calculating molecular weight averages for non- 
linear polymers a. Results for certain linear polymerizations 
can be deduced directly from their equations. Our purpose 
here is to highlight these aspects and to work through some 
examples of important multicomponent linear copolymeriza- 
tions. The method uses the so-called law of total proba- 
bility of expectation, which may be stated in the following 
way. Let A be an event, A its complement. Let Y be a ran- 
dom variable, E(Y) its expectation (or average value), and 

0032-3861/80/030263-- 11 $02.00 
© 1980 IPC Business Press POLYMER, 1980, Vol 21, March 263 



Recursive approach to copolymerization statistics: F. Lopez-Serrano et al. 

E(Y/A) its conditional expectation, given that the event A 
has occurred. P(A) is the probability that event A occurs. 
Then the law of total probability for expectation is: 

E(Y) = E(Y/A)P(A) + E(Y/A)P(A) (1) 

This law is discussed in most introductory books on proba- 
bility theory 9. 

The goals of this work are to develop this new method 
as a tool for calculating molecular weight averages in linear 
multicomponent copolymerizations, which is useful and 
straightforward to use even when the mechanisms are com- 
plex or temperature is an important variable, to calculate 
average values of the sequence distribution from the same 
unified approach, and to compare and contrast with previous 
approaches, where possible, to highlight advantages and 
disadvantages of each. A brief review of other approaches 
is thus in order before describing the recursive approach. 
Most of the discussion here will be presented in terms of 
step-growth polymerization, although with proper identifi- 
cation of the transition probabilities most of the statistical 
developments are equally applicable to chain-growth 
polymerization. 

BACKGROUND ON OTHER APPROACHES 

Flory ~° recognized the Markov chain nature of most poly- 
merization processes and showed how, for the simplest 
mechanisms, consideration of the reaction (transition) pro- 
babilities leads to a geometric distribution of molecular 
weights and chain lengths. For a linear polycondensation 
of an AB-type monomer, we need only ask for the proba- 
bility, Px, of forming a macromolecule o fx  units by adding 
exactly (x - 1)AB units to an original AB unit and then no 
further additions are made. This may be written down 
directly as 

Px=pX-l(1 - p )  (2) 

where p is the probability of reaction having occurred for 
any A (or B) group chosen at random, that is, the fractional 
conversion of A or B end-groups*. Since 

1 
xn - (4) 

1 - p  

and the weight-average chain length: 

l + p  
- ( 5 )  

1 - p  

For more complicated cases of interest, Case 3 has demon- 
strated how the above principles may be applied in a con- 
ceptually straightforward way to give the number chain 
length (CLD) and molecular weight (MWD) distributions. 
Consider briefly now the case of AA, BB, CC step-growth 
copolymerization, adopting Case's notation, (where BB and 
CC do not react with one another), a case of importance 
to commercial urethane polymerization to be considered in 
more detail in a later section. Six types of polymer mole- 
cules, classified by their two end-groups, exist (AA, BB, CC, 
AB, AC, BC). Each will have a geometrical distribution of 
chain lengths which may be written down directly following 
the same line of reasoning which leads to equation (2). 
The overall MWD or CLD is the sum of the individual dis- 
tributions, weighted by their respective mole fractions. The 
resulting expressions are quite unwieldy, and extremely diffi- 
cult to use to calculate moments and average molecular 
weights. For this reason, expressions for some of the ex- 
perimentally accessible average molecular weights have never 
been published even though Case's work 3 is more than 
twenty years old. Another disadvantage of this approach is 
that analysis of sequence distributions requires a parallel and 
equally unwieldy development. 

When it is not possible or straightforward to derive the 
desired expression from direct mechanistic reasoning, 
Lowry 4 has shown how it is possible to combine the various 
probabilities of reaction in a Markov-chain transition matrix 
and then obtain the CLD and its moments by matrix mani- 
pulation. Since one is interested in chains of finite length, 
termination ('absorption') probabilities are included in the 
transition probability matrix, thus we are dealing with 
'absorbing' Markov chains. For this type of problem, the 
transition probability matrix P can be partitioned into sub- 
matrices in the following way- 

x=l 

=P - -  (5) 

we can identify the Px with the mole fractions Nx of polymer 
molecules of length x, and the geometrical nature of the 
number chain length distribution is clear. Other well-known 
results for this reaction system are those for the distribution 
of numbers of polymers, ~Tx, of length x: 

r/x = NopX- 1 (1 - p)2 (3) 

where N O is the initial number of AB units present; the 
number-average chain length: 

* The probability would have a different interpretation for an addi- 
tion polymerization mechanism. In that case p would be the instan- 
taneous probability that a propagation step occurs, with respect to 
all the alternatives. Lowry 4 gives a more complete discussion of 
how, and the extent to which, much of what is discussed here for 
step-growth polymerization also applies to chain-growth 
polymerization 

The rank of the square matrix P is one greater than the number 
of transient states in the Marko~-chain process which repre- 
sents the polymerization. For analysing step-growth poly- 
merizations the most convenient approach is to envision a 
sequential counting process on already-formed chains, at 
some extent of reaction, as being the Markovian process. A 
particular transient state is then identified as the presence of 
a particular comonomer unit at some position along the 
chain, and the transition probabilities between the transient 
states are the probabilities that some one of the other states 
(comonomers) follows the 'present' state along the chain. If 
reaction (transition) between a particular pair of monomers 
(transient states) is forbidden, a zero transition probability 
results. Thus, there are as many transient states as there are 
comonomers in the reaction, let us say N. In Equation (5), 
9_ is an N x N matrix of probabilities of transition among 
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the various transient states. R is an N x 1 matrixt of pro- 
babilities of absorption (termination) from each of the tran- 
sient states. Termination or absorption in this process is 
the state of having no comonomer unit following the 'present' 
state. Q is a 1 x N matrixt containing only zeros which indi- 
cates tt~ impossibility of a transient state being reached 
from an absorbing state. In this case, where we have only 
one absorbing state (termination or, actually, the state of 
having no comonomer unit following the 'present' state),t 
I = 1 which assures that once the system enters the absorbed 
state (terminates), it stays there. The P matrix is stochastic. 
This sequential counting process must ]3egin at a chain end 
if it is to count all the units and give us the CLD and so, 
besides knowledge of the elements of P_, we need to know qO, 
the vector of probabilities of each of tee transient states 
(comonomer units) initiating (occurring at the end of) a 
chain. With these two arrays of information, Lowry shows, 
using the stochastic quality of P, that the CLD is given by: 

Px = q°QX-I  q -  Q) 1 (6) 

where I is the identity matrix of rank N and 1 is an N- 
dimen~onal column vector of ones. Any moment of P x, 
Xr, may be calculated from: 

)k r = q ° t  r (7) 

where the tr are given by the following recursion formula: 

r - 1  

Z (;)t,, 
k = l  

(8) 

tl = ( ! _  Q ) - I  1 (9) 

In particular, this leads to: 

En = X1 = q°(I  - Q) - I  1 (10) 

~2 q°[2(I-Q)-l-II (I-Q) - l l  
2 w = -  - - = = - = (11) 

~1 q O ( l  _ Q ) - I  I 

Notice that equation (6) is simply a matrix generalization of 
equation (2). For the case of AB polymerization, we have Q 
= (p) and qO = 1, thus (] - Q ) - I  = 1/(1 - p )  and by applica- 
tion of equations (6), (10) and (11) the results of equations 
(2), (4) and (5) are recovered. For more complicated cases, 
we diagonalize Q by a similarity transformation and evaluate 
Q x - 1  from: - 

QX-I  =S-1EX 1S (12) 
z 

where E x - 1 is the matrix which has the eigenvalues of Q 
raised ~o the x - 1 (e x- l) along the principal diagonal,and 
S_ is the matrix of eigenvectors ai corresponding to the e i. 
While the matrix manipulations generate compact matrix 
formulae, it is very tedious to develop the corresponding 
algebraic formulae, especially for Px. Of course, we can 
perform the matrix computations numerically on the com- 
puter. This is the prime advantage of the Markov chain forma- 

~ If there is more than one absorbing state (unusual for polymeriza- 
tion models) say n, R is N x n, O is n x N and I is the n x n identity 
matrix = = 

lism over Case's direct summation technique. One serious 
disadvantage of this approach is that there is no obvious way 
of putting the molecular weights of the individual comonomers 
into this scheme and thus calculate MWD, instead of CLD, 
and their respective averages. This is a problem with copoly- 
merizations since it is often molecular weight, and not total 
number of units incorporated into a chain, which is experi- 
mentally accessible or desired. 

Pellet 11 has presented an approach which is very similar 
in concept to the Markov chain approach described above. 
He works in terms of a matrix 1M, of 'sequential' probabilities 
which are different from, but related to, the Markov chain 
transition probabilities. Through matrix manipulations akin 
to those used in the treatment of the statistical thermo- 
dynamics of one-dimensional systems, he shows that for the 
system A I -B  1 copolymerizing with A2-B 2 (representative 
of two different hydroxy- or amino-acids) the CLD may be 
calculated from: 

Px=(1  1 ) M x - l ( P I )  = p2 (13) 

where P 1 and p2 are the mole fractions of monomers 1 and 
2 respectively. 

P12)  

the matrix of sequential probabilities, that is, Pii is the pro- 
bability of monomer ] following monomer i along the chain. 
The first two moments of  Px are obtained by differentiation 
of N=I__ x and given by: 

k l = E n = ( 1  1) ~ ~MM p2 
n=l  

and 

)k2 = ~,l~w = (1 1) 

n=l n=l 

(15) 

For the case of a single AB monomer, the two dimensional 
quality of the above matrices and vectors collapses to one 
and we have M = (p) and P I  = 1 - p and by application of 
equations (13~, (14) and (15) the results of equations (2), 
(4) and (5) are recovered. This method, while having the same 
usefulness and elegance of the Markov chain approach, also 
has the same drawbacks. Primary among these are: (1) the 
lack of a clear way to incorporate monomer molecular 
weights to be able to calculate MWD instead of CLD and 
(2) the extreme unwieldiness of the formal machinery in 
generating useful algebraic expressions for average degrees of 
polymerization for even moderately elaborate reaction 
schemes. Peller does extend his treatment to give a unified 
analysis of sequence distribution as well and that is an 
advantage. 

Deterministic approaches to these problems are of course 
also possible 12. However, no analytical results can usually 
be obtained forMWD or CLD from the systems of differential 
equations except in the very simplest cases. Peebles 13 has 
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combined the deterministic and statistical approaches in a 
novel way, in developing a set of differential equations for 
number-average sequence length, Nn' of BB segments in the 
AA, BB, CC system mentioned above. The analysis is in- 
volved, but does lead to a simple analytical expression in the 
simple limiting case of equal reactivity, 100% conversion, and 
exact stoichiometric balance between the sum of B and C 
groups and A groups. He then uses statistical arguments to 
demonstrate the geometrical nature of the BB sequence dis- 
tribution. Sorta and Melis 14 and Frensdorff is have also con- 
sidered the sequence distribution problem independently, 
under the equal reactivity assumption. 

The purpose of the new approach presented here are (1) 
to avoid some of the cumbersome qualities of formal 
machineries by calculating the average values of these distri- 
butions in a novel way; (2) to develop a statistical approach 
equally capable of calculating average molecular weights and 
average degrees of polymerization; and (3) to treat the 
average properties ofMWD, CLD and sequence distribution 
with a unified approach avoiding the necessity of all simpli- 
fying assumptions of equal reactivity and stoichiometry. 

The method is demonstrated below with three examples, 
each of which has been treated previously by one of the 
above methods under certain simplifying assumptions. 
These will serve to establish the validity and usefulness of 
the approach, especially in calculating average values of dis- 
tributions in linear copolymerizations. 

The expected weight attached to an A looking 'out' given 
that that A has reacted with a B must be equal to the ex- 
pected weight attached to a B group looking 'in': 

E (W°AUt / Ar. B) = E (W ~ n) (18) 

RESULTS 

Simple AB step-growth homopolymerization 
The polymer resulting from the AB homopolymerization 

is shown below: 

In Out In Out 
• • 

( AB AI5 AB AB A B - - )  

Picking an A group at random, we define the 'in' direction 
from the chosen A toward the B group from the same original 
monomer unit. 'Out' is then the opposite direction, from 
the chosen A toward the remainder of the chain on the 'A' 
side of the monomer• Similar definitions apply to the 'in' 
and 'out' directions associated with B groups. 

We begin by asking for the expected weight of the polymer 
chain attached to a randomly-chosen A group looking 'out', 
E(WRUt). By application of equation (1) we can express 
this expected weight in words, as being equal to the expected 
weight attached to an A looking 'out', conditional on A hav- 
ing reacted with B, times the probability of A reacting with 
B (p) plus the expected weight attached to an A looking 
'out' conditional on A not having reacted, times the pro- 
bability of A not reacting, 1 - p .  Symbolically we write: 

E(W R ut ) = E (W R ut/A reacts w/B)p 

+ E (W R ut/A doe s not react w/B) (1 - p) (16) 

(Throughout the remainder of this paper we will use the 
abbreviation 'r' for 'reacts with' and 'dnr' for 'does not react 
with'.) 

The second term of equation (16) is clearly zero, thus: 

E(WR ut ) = E(W~ ut/Ar'B)p (17) 

The expected weight attached to a B looking 'in' is equal to 
the weight of an AB-mer plus the expected weight attached 
to an A looking 'out': 

E(W iBn ) = MAB + E(W R ut ) (19) 

Equations (17), (18) and (19) are 3 equations with 3 un- 
knowns, which may be solved to give the unknown expected 
weights. If we begin instead by asking for the expected 
weight attached to a B group looking out, we arrive at a 
parallel set of 3 equations by the same arguments: 

E (W ~ut ) = E(W ~3 ut/Ar" B)p 

+ E(W ~utj~mCnr.':'B) (t - p) (20) 
0 ~s  

E(W ~ut/Ar'B) = E(W i~ ) (21) 

E(W2)  =MAB + E(W~ ut) (22) 

The recursive nature of these chains is thus clear. Choosing 
a starting point somewhere along the chain and moving 
along the chain in some direction will always eventually 
result in reaching another position statistically equivalent 
to the starting point. 

Average molecular weights are calculated by recognizing 
that the weight-average molecular weight will be given by 
the sum of the weight of an AB mer unit plus the expected 
weights attached to each arm looking 'out'. 

/l~w = MAB + E(W~ ut) + E(W~ ut) (23) 

or analogously for weight-average chain length: 

2 w = 1 + E(N~, ut) +E(N~ ut) (24) 

where the E(N) are expected numbers of units attached. 
The equations for the E(N) are identical to those for the 
E(W) except MAB is replaced by 1 wherever it appears. 
Solving equations (17) to (22) and the analogous equations 
for the E(N) gives: 

E(wRUt)+E(W~ut)=MAB P ; E(NRUt)=E(N~Ut)= P 
1 - p  1 - [  

P 
E(wiAn) = E(W iB n) = M AB ~ - -  

1--p 

(25) 

E(Ni~)=  E(NiBn) - P (26) 
1 - p  

Thus, the well known result is obtained by substituting in- 
to equations (24) and (25): 

/~rw = MAB + MAB p + MAB p 1 + p _ _  _ _  = M A B - -  
1 - - p  1 - - p  1 - - p  

(27) 
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AA represents diisocyanate 

O ~ C ~ N - ~ ~ C H 2 ~ - - N  =C=O 

BB represents short or hord diot 

H O-{-- C H 2--}~-4 OH 

CC represents tong or soft dio[ 

HO-(-CH 2CH 2CH 2CH 20-}~n H 

Figure 1 Example of AA,  BB, CC system 

and 

l + p  
Xw-  

1 - p  

Number-average molecular weights and chain lengths are 
obtained from the same equations in the following way. 
In the above calculations, we have picked mer units at ran- 
dom; this is a 'weight-averaging' process for molecules; 
since the larger the molecule, the proportionately larger 
chance it has of being chosen. If instead we choose 
molecules at random, by picking chain ends at random, 
and ask for the expected weight attached to the end group 
looking 'in', we obtain a 'number-averaged' quantity. If 
we pick end-groups, we must statistically weight the 
E(W m) by the mole fraction of each type of end-group, 
that is, the mole fractions of unreacted A and B, (x A and 
x B, in this case); thus: 

# ,  = Xa E(W~, n) + XBE(WiB n) 

2 n = x A E(NiA n) + XBE(NiB n ) (28) 

Since there are equal numbers of A and B ends in this 
simple case, XA = XB = ½, and we get from equations (26) 
and (28): 

1 1 1 
)14 n = MAB (½) + MAB(½ ) = M A B - - -  

1 - p  1 - p  1 - p  

and 

1 
2 n - (29) 

1 - p  

Thus, the well-known results of equations (4) and (5) are 
recovered. 

We have gone into great detail in the calculation for this 
case, since it is one upon which intuition works well and 
therefore insight can be obtained into the mechanics and 
basis of the recursive method. 

For simple cases, our approach is no more streamlined 
than the older approaches. This example does show quite 
well how the method works. The first order Markovian 
character is built into our approach on the impliciit assump- 
tion that it is only the immediately previous group along 
the chain which affects the likelihood of a given unit being 
present on the next step. This will become clearer in subse- 
quent sections, and accounts for the fact that the averages 
calculated by this method reflect a geometrical quality of 
the distributions (Mw/M n ~ 2 asp ~ 1). The direct calcu- 

lation of averages using this method gives considerable 
streamlining in more complex cases. 

AA,  BB, CC step-growth copolymerization 

An example of this system is the reaction which forms a 
thermoplastic polyurethane (TPU) elastomer. A typical 
TPU system consists of a diisocyanate (AA), a short (or 
'hard') diol (BB) and a long (or 'soft') diol (CC), as shown 
schematically in Figure 1. The hydroxyl groups of BB and 
CC react with the isocyanate groups of AA to form the ure- 
thane linkage. 

It is customary to consider average properties as functions 
of the extents of reaction, or fractional conversions, of the 
reactants. For this system we define the following extents 
of reaction: 

A o - A  
P - - -  (30) 

AO 

B 0 - B 
ql - - -  (31) 

B0 

C O - C 
q2 - - -  (32) 

Co 

where A, B and C denote concentrations of the various reac- 
tive end-groups and the subscript zero indicates the values at 
zero time. We shall derive the various averages in terms of 
P, ql and q2. In the Appendix we show how to relate them 
to the polymerization kinetics. We will make the following 
general assumptions in our treatment: (1) all groups react 
independently of one another and (2) all reactive groups of 
the same type (A, B, C) react equally, but we do not assume 
equal reactivity of B and C with A. (Some other manifesta- 
tions have of unequal reactivity also been treated by Miller 
and Macoskol6.) 

We represent the polymerization of AA, BB and CC 
schematically in Figure 2. This Figure serves to define the 
various 'directions' in our development of recursion rela- 
tions. Let this system polymerize to an extent p of the A 
groups, ql of the B groups and q2 of the C groups. Now, 
pick an A group at random. What is the weight, W~ ut, 
attached to an A looking out from its parent molecules, in 
the direction 1 >? Since the A is chosen at random, W~ ut 
is a random variable. A has three possible states: 

A has not reacted 

/ ~  A has reacted with B 

A has reacted ~ . . _ _ . ~  A has reacted with C 

Figure 2 

In Out 

B - - B  k,S 

1 
A r e a  

In Out 
P 

C - - C  

Recursion directions for AA, BB, CC 

In Out 
A - - A  
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Thus, W~ ut can have any one of three values: 

0 if A has not reacted 
W,~ ut= W m if A has reacted with B 

W~n if A has reacted with C 

Application of equation (1) gives: 
/ 

E(W~, ut) = E(wiBn)PAB + E(W~n)PAC + 0(1 - ~ R ~ ; -  PAC) 
. /  

0 =¢ 
(33) 

where PAB and PAC are the probabilities that A reacts with 
B and C, respectively. Clearly: 

PAB + PAC = P (34) 

In terms of concentrations, we have: 

PAB = 
Moles of B reacted 

Total moles of B and C reacted 

E(W~3 ut) = E(W~ ut/Br" A)q~ E(W~/t4~dnr • A) (1 - q l) 

t,¢ 
0 (43) 

Since BB and CC react only with AA: 

E(W~3 ut) = E(WiAn)ql (44) 

out in E(WC ) = E(W A )q2 (45) 

An finally, 

E(wi~) = MAA + E(W~ ut) (46) 

Equations (33), (41), (42) and (44)-(46) constitute a set of 
six equations and six unknowns which can be solved for the 
expected weights. The molecular weight, WAA, of the entire 
molecule to which a randomly chosen AA belongs will be 
the molecular weight of AA plus the expected weight 
attache&to both arms: 

E(WAA ) = MAA + 2E(W~ ut) (47) 

Moles of C reacted 
PAC = (35) 

Total moles of B and C reacted 

Therefore: 

Bo - B q 1B o 
PAB = p - p (36) 

Bo - B + Co-  C qlBO + q2Co 

C O - C q2Co 
= - ( 3 7 )  

PAC Bo _ B + C O - C p qlB O + q2CO p 

The probabilities appearing in these equations are identical 
to those which would compose a transition probability 
matrix in the Markov chain approach; they are distinct from 
the 'sequential' probabilities of Peller n in ways which can 
only be fully appreicated by reading his paper. From stoi- 
chiometric arguments it is clear that: 

Aop = Boq 1 + Coq2 (38) 

and therefore 

PAB =r lq t ;  PAC =r2q2 (39) 

where 

rl = Bo/Ao; r2 = Co/Ao (40) 

The expected weight on any B group looking into its parent 
molecule, E(W~), will be the molecular weight of BB plus 
the expected weight on the other arm, which is just E(W~3ut): 

E(wiB n ) = MBB + E(W~ ut) (41) 

Similarly: 

E(W~) = MCC + E(WcOUt) (42) 

and similarly 

E(WBB) = MBB + 2E(W~ ut) (48) 

o u t  E(WCC ) = MCC + 2E(W C ) (49) 

Solving (33), (41), (42) and (44)--(49) simultaneously gives: 

E(WAA)=MAA + 2 (M +_QMAAII _ Q  ] (50) 

M + Q.~AA) 
E(WBB) =MBB + 2q 1 MAA + 

1-- 

( E(WCC ) = MCC + 2 q2 MAA + 
1-- 

(51) 

(52) 

whereM =MBBPA B +MCCPA C and Q = qlPAB + q2PAC. 
To find the weight-average molecular weight, we pick a unit 
of mass at random and compute the expected weight of the 
molecule of which it is a part (another application of equa- 
tion I): 

~lw = ~ E(Wii)wii 

i=A,B,C 

(53) 

where COil is the initial weight fraction of monomer ii (i = 
A, B, C) defined by: 

Mii [i10 
O~ii = (54) 

Mii[i]o 

i = A , B , C  

[i] 0 = A0, B0 and CO. Substituting equations (50)--(52) into 
(53) gives: 

Following the arrows in Figure 2 we can continue to write 
relations for the expected weights until the recursive nature 
of the structure brings us back to equation (33). 

Mw = I4/+ 2R + 2G(¢OAA + COBBql + COBBql + coccq2) 

(55) 
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K=01 

' ' ' ' o' .s  . . . .  
p 

Figure 3 Polydispersity of MWD vs. conversion of isocyanate for 
various degrees of unequal reactivity: K = k2/kl, r l  = 0.5; r 2 = 0.5. 
M A =  1;M B= 1 ;Mc=0 .1  

with 

Equation (58) coincides with the result given by Case which 
can be derived also by standard mass balance argument. By 
replacingMAA, MBB and MCC by 1 in equations (55) and 
(58), we obtain the expressions for Xw and Xn, respectively: 

Xw = 1 + 2R"  + 2G'(COAA + COBBql + coccq2) (59) 

2 n = 1 + R "'  + G '(XAA + XBB q 1 + xccq2)  (60) 

where 

R" = 2.~ qi~ii 
i=B,C 

R'" = Z qixii 
i=B,C 

W= 6°iiMii; R = ~ qlMii6°ii 
i=A,B,C i=B,C 

and 

G'  = (p + Q)/(1 - Q) 

and 

G = (34 + QMAA)/(1 - Q) 

In order ot calculate number-average molecular weight 
we need to combine the above calculated expected weights 
in a different way, as discussed earlier. We now want to pick 
polymer molecules equally by number, not as above which, 
as discussed, is a weight-averaging process. We accomplish 
this by picking only chain ends, with equal probability. 
Thus: 

~lu= ~ E(Wjn)xii 

i=A,B ,C 

(56) 

where xii is the number (mole) fraction of each type of end- 
group which is unreacted, that is, at a chain end: 

XAA =A0(1 -p) /Z  

XBB = B0(1 - ql)/E 

xCC = C0(1 - q2)/Z (57) 

From equations (55) and (58)-(60),  it is clear that the 
terms involving G and G' are the dominant ones as conversion 
increases. Equally clear is the fact that a polydispersity of 
2 is approached asymptotically at high conversion. Study 
of Case's work 3 reveals the comparative simplicity of the 
recursive approach. 

In Figure 3 we show some illustrative results demonstrat- 
ing the effect on polydispersity of unequal reactivity of A 
for B and C. These results were obtained by employing the 
kinetic equations of the Appendix with equations (55) and 
(58); the parameter K is the ratio of rate constants: K = 
k2/kl. We see that for equal reactivity Mw/M n increases 
monotonically towards 2 with increasing conversion; in con- 
trast, for unequal reactivity, Mw/M n shows a maximum 
greater than 2 before decreasing to the complete conversion 
limit of 2. Gandhi and Babu 16 saw similar behaviour in some 
other unequal reactivity examples. 

Average sequence lengths are correspondingly simple to 
obtain. Referring to Figure 4, we define the size or lengths 
of a BB or CC sequence as the number of times that BB or 
CC is repeated in the run. Now we pick an A group at random 
and ask for the expected number of, for instance, BB units 
[E(N~tBB) ] sequentially attached to that A, looking 'out '  
from its parent molecule: 

where 

= A 0(1 - p) + B0(1 - q 1) + C0(1 - q2) 
E(N2~3B ) = 

0 if A has not reacted 
in E(NB,BB ) if A has reacted with BB 

0 if A has reacted with CC 

The final result for number-average molecular weight is: 

.~r n = N + R '  + G(xAA + XBBql + Xccq2) 

where 

N = xiiMii 
i=A,B,C 

(58) 

The difference here from calculations of total chain lengths 
is that now another one of the possibilities, reaction with 
CC, leads to a zero expectation value of the desired quan- 
tity. Thus, applying equation (1): 

E(N~U~B) in 
, = E(NB:BB ) = E(N~,BB)PAB (61) 

and 

R ' =  

i=B,C 

qi Miixii 

- ( - A A - -  B B - - A A - -  B B - - A A - -  B B - - A A - - C C - - A A - - C C - - ) - -  
I 1 I I 

BB sequence tength 3 CC sequence tength 2 

Figure 4 Definition of sequence lengths 
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Clearly: 
in _ out 

E(NB,BB ) -  1 +E(NB,BB ) (62) 

A second application of equation (1) gives: 

E(N~U,~B)  in = E(NB,AA)ql  (63) 

A set of 4 equations in 4 unknowns is completed by 
recognizing: 

E(NiBn, AA) = E(N~,Uth) ( 5 4 )  

The number- and weight-average sequence lengths are calcu- 
lated directly from these results since: 

/Vn,BB = I + E(N~,U~B) (65) 

chemical chain is illustrated in Figure 5. We now need to 
define eight probabilities of reaction: 

PAiB] = probability that A i reacts with B! 

PBiAi = probability that Bi reacts with A/ 

i,] = 1, 2. Fortunately, due to the nature of the system, we 
can reduce them to four since: 

the number of A1-B 1 bonds = A10PA IB 1 

= the number of B I - A  t bonds = B 10PB~ A t 

leading to: 

PAl B 1 = PBIA 1 (69) 

and 

Nw,BB = 1 + 2E(N~U~B) (66) 

The geometric quality, which a distribution must possess in 
order for this approach to work, is clear from these equations. 
The final results for average sequence lengths of BB and CC 
are: 

since the initial concentration of A 1 groups, A 10, equals the 
initial concentration of B1 groups, B10. Similarly: 

PA2B2 = PB2A2 (70) 

For the cross-reactions we have: 

the number of A1-B 2 bonds = A10PAt B 2 

1 1 
]Vn, BB- l _ r l q 2  ; /Vn,cC- l _ r 2 q 2  (67) 

1 + r l q  ? 1 +r2q 2 

Nw',BB- l_rlq------~l, Nw, CC-  1 -r2q-------~2 (68) 

These results agree with Pebbles la for the cases which he 
was able to calculate. The one case for which he obtained 
an analytical solution was for stoichiometric equi- 
valence at complete conversion where he found Nn, BB = 
Ao/C 0 agreeing with equation (67). We need not resort to 
his arguments to see the breadth of the sequence length 
distribution. The above calculation again demonstrates the 
simplicity of the recursive approach. What is missing is a 
model of conversion vs. time behaviour to give the time 
evolution of the average values. Discussion of this is given in 
the Appendix. Unequal reactivity presents no difficulty in 
this approach. We have dealt with one type of unequal re- 
activity here, that of differences between B and C groups. 
The simplicity of the scheme would not be altered, although 
the volume of simple algebraic equations would increase 
somewhat, if all groups reacted differently, that is if reac- 
tive assymmetry existed within the same difunctional mole- 
cule ~7. The case of different reactivity between monomer 
and polymer groups is also amenable to this approach ~a. In 
the next case we treat a different sort of step-growth 
copolymerization. 

A I BI A2 B2 step-growth copolymerization n 

This case ls intended to represent the copolymerization 
of two different amino- or hydroxy-acids and thus A 1 and 
A 2 react with B 1 and B 2 but neither A 1 and A2 nor B t and 
B 2 react with one another. This case turns out to be some- 
what more cumbersome mathematically since each mono- 
mer now has a 'sense', that is a built-in direction, with a dif- 
ferent type of chemical group on each end. The recursive 

= the number of B2-A1 bonds = B20PB2 A 1 

yielding: 

PAIB2 = rPB2At (71) 

where r = [A2B2] 0/[A1BI]0 and by similar reasoning: 

1 
PA2 B2 = rPB1A2 (73) 

Therefore, we can use the four PAiB. and r in the subsequent 
I 

expressions. These can be related to fractional conversions 
of A and B groups: 

Ai0 - A i 
Pi - (74) 

Ai0 

Bi0 - B i 
qi - - -  (75) 

B/0 

by simple algebra as follows: 

B l o - B 1  ql 
PA 1B 1 -- - - -  Pl (76) 

BlO BI+B20 B2Pl  - - ql  +rq2 

k I / . - - - - - ' ~  At Bt 

AIBI ~ A2B 2 

AtBt ~ At B I 

~ k 3  A:~B2 ~ A2B 2 

Figure 5 Recursion directions for A t BI, A2B 2 
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B20 - B 2 rq2 
PA~B2 = B 2 P l -  - -  Pl (77) 

B I 0 -  BI + B 2 0 -  ql  + rq2 

ql 
PA2B1 - - -  P2 (78) 

ql + rq2 

rq2 
PA2B2 - f2 (79) 

ql + rq2 

or 

~I w = wlE(W1) + (1 - Wl)E(W2) 

where 

e([¥1) in = E(WA1 ) out E(w~It ) +E(WA,  ) = e ( w ~ l )  + 

E(W2 ) = E(WA 2in ) +E(WA2)=E(W~2)out + E(W out aB2 ) 

(88b) 

In the analysis that follows the weight of  the condensation 
product (e.g. water) will be neglected. This can readily be 
included, and in fact has been by one of us 18 but as pre- 
viously demonstrated by Case s , the effect is negligible and 
therefore we prefer not to confuse this example more than 
necessary. 

With these preliminaries complete, we now proceed to 
calculate average molecular weights using the now-familiar 
recursive approach. We pick an A i or Bi end-group at ran- 
dom, each in turn, and ask for the expected weight attached 
to it, looking 'in' and 'out '  of  its parent molecule. We then 
proceed along the chain writing simple algebraic equations 
until recursion occurs, that is, until the set of  equations 
becomes determinate. For this system we obtain: 

E (W~, )  = MA, B, + E(  WI~ ,°ut ) 

in out 
E(WA2)=MA2B 2 +E(WB2 ) 

out E(w~n)=MA,B, +E(WA, ) 

- out E(WBn 2) =MA2B 2 +/~(WA2 ) 

(80) 

(81) 

(82) 

(83) 

Applying equation (1): 

and 

MA1 Alo 
COl = (89) 

MA1B1AlO + MA2B2A20 

Solving (80) - (87)  and substituting into equation (88) gives: 

1 
/~W = X 

(1 -- PAtBl)(1 -- PA2B 2 ) -- PA1B2PA2B1 

{~I(MA1B1 [(l --PA2B2) X (1 +PA1B1) + PA1B2PA2B1 ] 

+MA2B2 [rPA2B 1 + PA1B 2 ])+ 

(1 - COl)(MA2B2 [(1 --PAIB1)(1 +PA2B2) + 

PAIB2PA2B 1] +MA1B 1 [!PA1B2 +PA2B1])} 
r 

(90) 

By previous arguments, the number-average molecular 
weight is given by: 

EtWOUt . in ' B, ) +E(W~2)rpA2B , (84) =/~ (WA1)PAI B 1 

1 out E(WB2 )=E(WiAn,)--PA,B2 +E(W~2)PA2B2 (85) 
r 

i=1,2 

or 

(91a) 

out in E(WA1 )=E(WB,)PA1B1 +E( in WB2)PAIB2 (86) 

out in + E ( W iBn2 E(WA 2 ) = E(WBI )PA2B 1 )PA2B 2 (87) 

The weight-average molecular weight is, as before, the ex- 
pected weight of a molecule to which a randomly chosen 
monomer unit belongs. This must be an average weight, the 
expected weights attached to each type of monomer  by the 
respective monomer  weight fraction. Thus, analogously to 
equation (53): 

/~tn _ in - x 1E(WA1 ) + (1 - Xl)E(W~2 ) (92b) 

where Xl is the mole fraction ofunreacted type I end- 
groups: 

x l  = 
A10(1 - PA1B1 - PAIB2) 

A10(1 - PAIB1 - PA1B2) + A20(1 --PA2B1 - PA2B2) 

(93) 

ffl w = ~ c°iE(Wi) 

i=1,2 

(88a) The result for-~'/n is: 

1 
Mn = x (94) 

(1)  (1 PA,B, PA,B2)+( ` --PA2B2 PA2B,) 

( l -  PAIBI PAIB2)[MA2B2PA2BI+(1)MAIB1(I--PA2B2)] 
(1--PAl) { (1--PAIB1)(I--PA2B2)--PAIB2PA2B1 

(1 --PAEB2 PA2B 1) [(lr)MAIBlPA1B2+MA2B2(1--PAIB1) ] 
+ / 

(1--PA~B~)(I--PA2B2) PA~B2PA2B1 
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Mass balance considerations lead to the simpler expression: 

MA1B ~ + rMA2B 2 

/~n = (1 -- PA1B 1 -- PAIB2) + r(1 -- PA2B1 - PA2B2) (95) 

Case a obtained equation (95) although he was unable to 
determine the weight-average molecular weight, Expressions 
for weight- and number-average degrees of polymerization 
are obtained simply by changingMA1B 2 and MA2B2 to 1 in 
the corresponding expression for the average molecular 
weight. As noted earlier, Peller tl has obtained results for 
this case (for Xw and xn only) in terms of 'sequential' proba- 
bilities rather than the Markov chain transition probabilities, 

PAiB/. However, the two sets of probabilities are related 
algebraically and the ~?w and xn versions of equations (90) 
and (94)give results identical to those of Peller H. 

Average sequence lengths of type 1 or type 2 monomers 
are obtained straightforwardly by the recursive approach for 
this case. Following the methods of the previous sections 
we find very simply: 

1 1 

Nn, A1B1 - ; Nn, A2B2 - (96) 
1 -- PAtBt 1 -- PA2B2 

_ _ 1 +PA2B2 _ 1 + PAIB1 ; Nw, A2B2 (97) 
Nw'A1B1 = i --PAIBI 1 --PA2B2 

Note again the geometrical quality of the distributions which 
a polymerization scheme must yield if it conforms to the 
assumptions inherent in this recursive approach. The above 
results are buried within those of Peller tl and are a much 
simpler means to the results of Sorta and Melis 14 on sequence 
distributions in finite length copolycondensation. 

DISCUSSION AND CONCLUSIONS 

We have described a technique for obtaining average values 
of molecular weight, chain length and sequence distributions 
in linear copolymerization. The technique is extremely 
simple to use, even for complex multicomponent copoly- 
merizations. It has the added conceptual benefit of exposing 
and exploiting the recursive nature of the first order Markov 
chain process. While the emphasis in this presentation was 
on demonstration of the technique, some new results were 
also obtained, particularly in the AA, BB, CC case for-~w, 
and the average sequence lengths. These are especially useful 
in the study of segmented urethane polymerization. 

Clearly the technique has much greater generality for 
study of multicomponent linear and nonlinear 
copolymerization° 
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APPENDIX 

Predicting time-dependent behaviour 

Until now we have effectively ignored the time evolution 
of the distribution by burying it in the extents of reaction. 
We here comment briefly on the kinetic equations necessary 
to predict the time-dependent behaviour. We will do this by 
writing the mass balance relations and taking advantage of 
certain stoichiometric facts. The illustration given here is 
for the AA, BB, CC system. Application to the A, B, A2B 2 
system will be straightforward. 

There are two reactions occurring: 

A + AB (A1) 

k2 
A + C > AC (h2) 

Writing the batch reactor mass balances gives (assuming first 
order reactions in all species): 

dA 
- k l A B  + k 2 A C  (A3) 

dt 

dB 
- k l A B  (A4) 

dt 

dC 
- k2AC (A5) 

dt 

Only two of the above three equations are independent 
since: 

A o - A = B o - B + C o - C  (A6) 

In terms of the extents of reaction equations (A3)-(A6) 
become: 

dp 
- -  = [klB0(1 - q l )  + k2C0(1 - q2)] (1 - p) 
dt 

(A7) 

dql 

dt 
- k l A 0 ( 1  - q l ) ( 1  - P )  (A8) 

dq.._..~. = k2A0( 1 _ q2)( 1 _ p) 
dt 

(A9) 
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p = q l r l  + q2r2 (AIO) 

This system is readily integrated numerically to obtain p(t), 
ql(t) and q2(t) and thus average properties varying with time. 
For equal reactivity, kl = k2 = k, this system admits a simple 
analytical solution: 

kAo t 1 
p ( t ) - - -  ; q l ( t ) = q 2 ( t ) = - p ( t )  (All )  

kAot  + l r 

r = rl + r2° As shown previously, all the reaction probabili- 

ties used in the earlier calculation can be calculated from the 
knowledge of a single conversion (p, ql or q2) for this case. 
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